Clustering in Geo-Social Networks
نویسندگان
چکیده
The rapid growth of Geo-Social Networks (GeoSNs) provides a new and rich form of data. Users of GeoSNs can capture their geographic locations and share them with other users via an operation named checkin. Thus, GeoSNs can track the connections (and the time of these connections) of geographic data to their users. In addition, the users are organized in a social network, which can be extended to a heterogeneous network if the connections to places via checkins are also considered. The goal of this paper is to analyze the opportunities in clustering this rich form of data. We first present a model for clustering geographic locations, based on GeoSN data. Then, we discuss how this model can be extended to consider temporal information from checkins. Finally, we study how the accuracy of community detection approaches can be improved by taking into account the checkins of users in a GeoSN.
منابع مشابه
Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)
With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...
متن کاملA Geo-Clustering Approach for the Detection of Areas-of-Interest and Their Underlying Semantics
Living in the “era of social networking”, we are experiencing a data revolution, generating an astonishing amount of digital information every single day. Due to this proliferation of data volume, there has been an explosion of new application domains for information mined from social networks. In this paper, we leverage this “socially-generated knowledge” (i.e., user-generated content derived ...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملEvaluating Influential Nodes in Social Networks by Local Centrality with a Coefficient
Influential nodes are rare in social networks, but their influence can quickly spread to most nodes in the network. Identifying influential nodes allows us to better control epidemic outbreaks, accelerate information propagation, conduct successful e-commerce advertisements, and so on. Classic methods for ranking influential nodes have limitations because they ignore the impact of the topology ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Data Eng. Bull.
دوره 38 شماره
صفحات -
تاریخ انتشار 2015